

Mission & Statement of Work

NMSU commissioned our capstone team to engineer a high-altitude, solar-powered UAV glider designed for climate research. The system was developed to deliver a long-endurance flight, modular payload capacity, and reliable atmospheric data collection under demanding environmental conditions.

The S.O.W included the following parameters:

- Integrate high-efficiency, solar-electric array
- Power propulsion & onboard electronics
- Develop cost-effective flight platform
- Achieve sustained long-duration flight
- Enable multi-parameter climate sensing
- Sensor selection (temperature, humidity, pressure)
- Optimize aerodynamic and thermal dynamics for high-altitude performance
- Stability in various environments
- Conduct validation testing
- Simulation-based performance evaluation
- Solar cell performance evaluation

Our team successfully designed and fabricated a versatile UAV glider that not only meets but exceeds project requirements, positioning it as a valuable asset for future climate research.

Research

Wings:

High aspect ratio desired for high lift generation and large surface area for fitting more solar cells.

Other Solar Planes:

AtlantikSolar, SolLong Solar, and Airbus Zephyr.

Power Generation and Modularity:

Easily accessible and adjustable sensor package, high surface area for solar cells, high capacity battery and low energy sensor package.

RC Inspiration:

Heavy inspiration from RC aircraft to maintain flexibility, reliability, modularity, and adaptability for consumers.

Solar Cells:

Solar cells need to generate high energy for their size, and have the necessary flexibility to endure flight forces.

Solar UAS

Keane Garcia (ME), Arturo Rivera (EE), Andres Brooks (MAE), Tristin Jameson (MAE), Bryndan Gardner (AE)

New Mexico State University

Final Design

Aircraft Specifications

Solar cells:

Solar

Panel

Control

System

4.2 m Wingspan: 2 m Length: Cruising speed: 25 kt

HQ258 (Wing) Airfoils:

NACA 0008 (Rudder and Stabilator)

Power —
ESC Signal —
Servo Signal &

24 (In Series)

Wing chord: 0.3 m3.8 kg Weight:

Max Motor Power: 1250 W

Flaperons, stabilator, rudder Control surfaces:

Theoretical Flight Time: 4.0 Hr ± 30 min

Power and Control System

- Pixhawk 6x flight controller (autopilot and telemetry)
 - GPS, 3x redundant barometers and gyroscopes
 - Power module for battery voltage, amperage, amp
- FrSky Archer SR10+ receiver
- 5S, 35C, 4000 mAh battery
- AXI 4120/20, 465 Kv (rpm/V), 1150 W electric motor
- Jeti Advance Pro ESC, 70A
- 17 x 7 folding propeller
- Genasun GVB-8 (boost) MPPT solar charge controller
- (4x) KST digital servos

Design Flow

Solar panel design and specs

determined the basis of the prototype; wing was designed around the cells. Wing design provided needed constraints to design aircraft dimensions and flight characteristics. Airframe Fuselage, stabilator, and rudder designs are derived from the design as a whole. After the aircraft and designed flight domain were determined, propulsion **Propulsion** could be found to suit the needs of the

above design steps.

The control system is mostly tertiary and design-independent.

Solar Panel - Specifications & Performance

NMSU CAPSTONE

Concept Development

Final Power System Simulation Results

Solar Cell Mounting

Most design iterations occurred around the mounting configuration of the solar cells within the wing. The prototype features the cells connected with pre-bent wires resting on the wing ribs.

Design benefits:

- Wing bending isolation
- Vibration and thermal isolation
- Easy install and maintenance
- Does not interfere with wing covering

References

www.atlantiksolar.ethz.ch

211

278.4

Diagnal (mm)

Weight (g)

- www.maxeon.com/maxeon-solar-cells
- https://www.ecalc.ch/motorcalc.php
- www.research-collection.ethz.ch/handle/20.500.11850/265638
- www.atlantiksolar.ethz.ch/wp-content/downloads/publications/JFR_81hFli ght_paper_final.pdf